1,478 research outputs found

    Protein structural variation in computational models and crystallographic data

    Get PDF
    Normal mode analysis offers an efficient way of modeling the conformational flexibility of protein structures. Simple models defined by contact topology, known as elastic network models, have been used to model a variety of systems, but the validation is typically limited to individual modes for a single protein. We use anisotropic displacement parameters from crystallography to test the quality of prediction of both the magnitude and directionality of conformational variance. Normal modes from four simple elastic network model potentials and from the CHARMM forcefield are calculated for a data set of 83 diverse, ultrahigh resolution crystal structures. While all five potentials provide good predictions of the magnitude of flexibility, the methods that consider all atoms have a clear edge at prediction of directionality, and the CHARMM potential produces the best agreement. The low-frequency modes from different potentials are similar, but those computed from the CHARMM potential show the greatest difference from the elastic network models. This was illustrated by computing the dynamic correlation matrices from different potentials for a PDZ domain structure. Comparison of normal mode results with anisotropic temperature factors opens the possibility of using ultrahigh resolution crystallographic data as a quantitative measure of molecular flexibility. The comprehensive evaluation demonstrates the costs and benefits of using normal mode potentials of varying complexity. Comparison of the dynamic correlation matrices suggests that a combination of topological and chemical potentials may help identify residues in which chemical forces make large contributions to intramolecular coupling.Comment: 17 pages, 4 figure

    Loop Dynamics of Thymidine Diphosphate-Rhamnose 3\u27-\u3cem\u3eO\u3c/em\u3e-Methyltransferase (CalS11), an Enzyme in Calicheamicin Biosynthesis

    Get PDF
    Structure analysis and ensemble refinement of the apo-structure of thymidine diphosphate (TDP)-rhamnose 3\u27-O-methyltransferase reveal a gate for substrate entry and product release. TDP-rhamnose 3\u27-O-methyltransferase (CalS11) catalyses a 3\u27-O-methylation of TDP-rhamnose, an intermediate in the biosynthesis of enediyne antitumor antibiotic calicheamicin. CalS11 operates at the sugar nucleotide stage prior to glycosylation step. Here, we present the crystal structure of the apo form of CalS11 at 1.89 Å resolution. We propose that the L2 loop functions as a gate facilitating and/or providing specificity for substrate entry or promoting product release. Ensemble refinement analysis slightly improves the crystallographic refinement statistics and furthermore provides a compelling way to visualize the dynamic model of loop L2, supporting the understanding of its proposed role in catalysis

    Successful Flash-Cooling of Xenon Derivatized Myoglobin Crystals

    Get PDF
    This paper demonstrates for the first time a method for preparing cryocooled xenon-derivatized protein crystals. The method is based upon the hypothesis and subsequent observation that the diffusion of a xenon atom from a tight binding site following depressurization occurs on a timescale of minutes. We have observed significant changes in diffraction intensities from myoglobin crystals for up to 5 min following depressurization from 1 MPa of xenon. In accordance with this observation, a xenon-derivatized myoglobin crystal was cryocooled at ~95 K within 20 s of complete depressurization. A crystallographic data set was then collected to 2.0 Å resolution and isomorphous and anomalous difference Patterson maps revealed the presence of a well ordered xenon site with an occupancy of approximately 0.5. Phasing statistics for this site were of good quality and demonstrate the practicality of this method. The ability to cryocool xenon-derivatized crystals will make this heavy-atom substitution method even more useful for single-isomorphous-replacement and multiple-isomorphous-replacement phasing of macromolecules

    CrysFormer: Protein Structure Prediction via 3d Patterson Maps and Partial Structure Attention

    Full text link
    Determining the structure of a protein has been a decades-long open question. A protein's three-dimensional structure often poses nontrivial computation costs, when classical simulation algorithms are utilized. Advances in the transformer neural network architecture -- such as AlphaFold2 -- achieve significant improvements for this problem, by learning from a large dataset of sequence information and corresponding protein structures. Yet, such methods only focus on sequence information; other available prior knowledge, such as protein crystallography and partial structure of amino acids, could be potentially utilized. To the best of our knowledge, we propose the first transformer-based model that directly utilizes protein crystallography and partial structure information to predict the electron density maps of proteins. Via two new datasets of peptide fragments (2-residue and 15-residue) , we demonstrate our method, dubbed \texttt{CrysFormer}, can achieve accurate predictions, based on a much smaller dataset size and with reduced computation costs

    OleD Loki as a Catalyst for Tertiary Amine and Hydroxamate Glycosylation

    Get PDF
    We describe the ability of an engineered glycosyltransferase (OleD Loki) to catalyze the N‐glycosylation of tertiary‐amine‐containing drugs and trichostatin hydroxamate glycosyl ester formation. As such, this study highlights the first bacterial model catalyst for tertiary‐amine N‐glycosylation and further expands the substrate scope and synthetic potential of engineered OleDs. In addition, this work could open the door to the discovery of similar capabilities among other permissive bacterial glycosyltransferases

    X-ray structure of a soluble Rieske-type ferredoxin from Mus musculus

    Get PDF
    The X-ray crystal structure of a soluble Rieske ferredoxin from M. musculus was solved at 2.07 Å resolution, revealing an iron–sulfur cluster-binding domain with similar architecture to the Rieske-type domains of bacterial aromatic dioxygenases. The ferredoxin was also shown to be capable of accepting electrons from both eukaryotic and prokaryotic oxidoreductases

    Crystal Structure of a Nonsymbiotic Plant Hemoglobin

    Get PDF
    Background: Nonsymbiotic hemoglobins (nsHbs) form a new class of plant proteins that is distinct genetically and structurally from leghemoglobins. They are found ubiquitously in plants and are expressed in low concentrations in a variety of tissues including roots and leaves. Their function involves a biochemical response to growth under limited O2 conditions. Results: The first X-ray crystal structure of a member of this class of proteins, riceHb1, has been determined to 2.4 Å resolution using a combination of phasing techniques. The active site of ferric riceHb1 differs significantly from those of traditional hemoglobins and myoglobins. The proximal and distal histidine sidechains coordinate directly to the heme iron, forming a hemichrome with spectral properties similar to those of cytochrome b5. The crystal structure also shows that riceHb1 is a dimer with a novel interface formed by close contacts between the G helix and the region between the B and C helices of the partner subunit. Conclusions: The bis-histidyl heme coordination found in riceHb1 is unusual for a protein that binds O2 reversibly. However, the distal His73 is rapidly displaced by ferrous ligands, and the overall O2 affinity is ultra-high (KD ≈ 1 nM). Our crystallographic model suggests that ligand binding occurs by an upward and outward movement of the E helix, concomitant dissociation of the distal histidine, possible repacking of the CD corner and folding of the D helix. Although the functional relevance of quaternary structure in nsHbs is unclear, the role of two conserved residues in stabilizing the dimer interface has been identified

    Structure of a cupin protein Plu4264 from Photorhabdus luminescens subsp. laumondii TTO1 at 1.35 Å resolution

    Get PDF
    Proteins belonging to the cupin superfamily have a wide range of catalytic and noncatalytic functions. Cupin proteins commonly have the capacity to bind a metal ion with the metal frequently determining the function of the protein. We have been investigating the function of homologous cupin proteins that are conserved in more than 40 species of bacteria. To gain insights into the potential function of these proteins we have solved the structure of Plu4264 from Photorhabdus luminescens TTO1 at a resolution of 1.35 Å and identified manganese as the likely natural metal ligand of the protein

    Structure and Function of a Dual Reductase–Dehydratase Enzyme System Involved in p-Terphenyl Biosynthesis

    Get PDF
    We report the identification of the ter gene cluster responsible for the formation of the p-terphenyl derivatives terfestatins B and C and echoside B from the Appalachian Streptomyces strain RM-5-8. We characterize the function of TerB/C, catalysts that work together as a dual enzyme system in the biosynthesis of natural terphenyls. TerB acts as a reductase and TerC as a dehydratase to enable the conversion of polyporic acid to a terphenyl triol intermediate. X-ray crystallography of the apo and substrate-bound forms for both enzymes provides additional mechanistic insights. Validation of the TerC structural model via mutagenesis highlights a critical role of arginine 143 and aspartate 173 in catalysis. Cumulatively, this work highlights a set of enzymes acting in harmony to control and direct reactive intermediates and advances fundamental understanding of the previously unresolved early steps in terphenyl biosynthesis

    Structure and Specificity of a Permissive Bacterial C-prenyltransferase

    Get PDF
    This study highlights the biochemical and structural characterization of the L-tryptophan C6 C-prenyltransferase (C-PT) PriB from Streptomyces sp. RM-5-8. PriB was found to be uniquely permissive to a diverse array of prenyl donors and acceptors including daptomycin. Two additional PTs also produced novel prenylated daptomycins with improved antibacterial activities over the parent drug
    • 

    corecore